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WZW–Poisson manifolds
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Abstract

We observe that a term of the WZW-type can be added to the Lagrangian of the Poissonσ -model
in such a way that the algebra of the first class constraints remains closed. This leads to a natural
generalization of the concept of Poisson geometry. The resulting “WZW–Poisson” manifoldM

is characterized by a bivectorΠ and by a closed three-formH such that 1/2[Π,Π ]Schouten =
〈H,Π ⊗ Π ⊗ Π〉.
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The presence of a closed three-form field combined with other geometrical data on a
manifold may lead to discoveries of rich mathematical structures having deep applications
in theoretical physics. As a basic example of this situation we mention the construction of
the so-called WZW model in[1]. The three-form in question is the bi-invariant Cartan form
on a (simple) Lie group manifold. Its presence in theσ -model action leads to conformal
invariance at the quantum level and consequently to many interesting ramifications both in
mathematics and physics.

This paper studies a generalization of Poisson manifolds induced naturally by the presence
of closed three-forms. In other words, we shall consider triples(M,Π,H), whereM is the
manifold,Π the bivector, andH the closed three-form. WhenH vanishes, the bivector will
have to satisfy the so-called Jacobi identity [Π,Π ]S = 0 ([·, ·]S is the Schouten bracket).
The manifolds with such a specialΠ are called Poisson and their study now represents
itself a well developed discipline in geometry.
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It was the idea of Schaller and Strobl[2] to associate to the Poisson manifold a spe-
cial dynamical system living on a two-dimensional surface and usually referred to as
the Poissonσ -model. They have shown that the Jacobi identity is the condition which
makes thisσ -model a maximally constrained dynamical system (see below for more de-
tails). This paper is based on the generalization of this observation. We actually add
to the standard Poissonσ -model a term containing the three-form fieldH in virtually
the same way as one adds the three-form term to the action of the usual WZW model
(seeEq. (9) below). Then we ask the question: which condition mustΠ and H ful-
fil so that the model(9) is a maximally constrained dynamical system? The result is
Eq. (10), which can be interpreted as Jacobi identity in the background of the three-
form H .

This paper provides the necessary technical details leading toEq. (10). It was our inten-
tion to make it short and not to develop the classical theory further without controlling the
concept of quantization. Indeed, we believe that the real understanding of the significance of
the generalized Jacobi identity will lie in presenting(10)as a sort of a semiclassical approx-
imation of some algebras with controlled non-associativity. The WZW–Poissonσ -model
(9) should then stand in the core of the non-associative generalization of the Kontsevich
formula. Although we are not able to offer here the quantization of our classical story, we
do believe that the generalizedσ -model (9) and the condition(10) contain the germ of
structures as rich as those related to the standard Poisson geometry.

We begin by the study of the following example: given a bivectorΠ = 1/2Π ij∂i ∧ ∂j
and a two-formΩ = 1/2Ωij dXi ∧ dXj on a manifoldM, we can immediately write down
the action functional

S[X,A] =
∫
Σ

(
Ai ∧ dXi + 1

2
Π ij (X)Ai ∧ Aj + 1

2
Ωij (X)dXi ∧ dXj

)
. (1)

In the story that follows,Σ will be a cylindrical world-sheet,Xi is a collection of coordinates
on the target spaceM, andAi is a set of 1-forms onΣ . Of course this action can be written
also in a coordinate-independent way.

Introducing the standard world-sheet coordinatesσ andτ (the loop and the evolution
parameters, respectively) we set

Ai = Aiσ dσ + Aiτ dτ, (2)

and rewrite(1) in the following form

S[X,A] =
∫
Σ

dσ dτ [pi∂τX
i − Aiτφ

i ]. (3)

Here

pi = Aiσ − Ωij∂σX
j , φi = ∂σX

i + Π ijpj + Π ijΩjk∂σX
k. (4)

LetP be some (possibly infinite-dimensional) manifold equipped with a symplectic form
dθ . Suppose there is a set of functionsh, φα, dα

β , c
αβ
γ fulfilling

{h, φα} = dα
β φ

β, {φα, φβ} = cαβγ φγ , (5)
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where the indices take values in some setU and the Poisson bracket corresponds to dθ . To
these data we associate the constrained dynamical system described by the action

S =
∫

(θ − (h + λαφ
α)dτ), (6)

whereλα is a set of Lagrange multipliers andφα are the corresponding first class constraints.
Now the question arises: for which pairΠ,Ω does the action(3) define a maximally

constrained dynamical system in the sense described above (i.e. the relations(5) should
hold). Of course,h = 0,Aiτ play the role of the Lagrange multipliersλα andθ = ∮

pi dXi .
It is simple to answer this question. The symplectic form dθ has the canonical Darboux

form and the calculation of the Poisson brackets is straightforward. We obtain

{φi(σ ), φj (σ ′)} = −(∂kΠ
ij + Π ilΠ jm(dΩ)klm)δ(σ − σ ′)φk(σ ), (7)

provided
1
2[Π,Π ]S = 〈dΩ,Π ⊗ Π ⊗ Π〉, (8)

holds true. The symbol [·, ·]S denotes the Schouten bracket and the functionsc
αβ
γ can be

read off from(7). The contraction on the right hand side is with respect to the first, third
and fifth entry ofΠ3. We remark that the condition(8) is necessary and sufficient for the
system of constraints following from(1) to be of the first class (cf.[3] for further details).

Our discussion can be slightly generalized. Consider the bivectorΠ and aclosed3-form
on the manifoldM. To these data we associate the following action

S[X,A] =
∫
Σ

(
Ai ∧ dXi + 1

2
Π ij (X)Ai ∧ Aj

)
+

∫
V

H. (9)

HereV is the interior of the cylinderΣ and byH we really mean the pullback ofH to V

by an extension toV of the mapXi(σ, τ ). Of course, there are the subtleties concerning
the boundaries of the cylinder and the WZW term. We do not give the detailed discussion
in this letter. It is a straightforward generalization of the treatment in[4], where the WZW
model on the cylinder is studied from the point of view of Hamiltonian mechanics.

Note that(9) reduces to(1) for H = dΩ. By repeating the previous discussion, we arrive
at the conclusion that the model(9) corresponds to a maximally constrained dynamical
system iff

1

2
[Π,Π ]S = 〈H,Π ⊗ Π ⊗ Π〉. (10)

ForH = 0, the action(9) defines the Poissonσ -model[2,5,6] and the condition(10) says
that the bivectorΠ satisfies the Jacobi identity. Therefore Poisson geometry could have
been invented by asking the question when the model(9) (with H = 0) is a maximally
constrained dynamical system or a topological field theory. If we do not setH = 0, the
same logic gives a natural generalization: the concept of what one might call WZW–Poisson
manifolds. We repeat that the latter is characterized by a bivectorΠ and a closed 3-formH
such that the condition(10)holds.

It remains to understand the properties of the WZW–Poisson manifolds in more detail. It
may be that there is a non-trivial intersection of this notion with the other generalizations of
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Poisson geometry like quasi-Poisson manifolds[7], Dirac manifolds[8] or the manifolds
leading to the non-associative generalization[9,10] of the Kontsevich expansion.

Note added:after completion of this work we became aware that the relation(10) was
obtained also in[11] within a BV approach.
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